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Abstract —Optimization of the axial buckling foad of composite. cyhindrical shells through a
judicious chotee of kiminate configuration is often associated with increased imperfection sensitivity.
Current approaches of combining postbuckling theory with an optimization program demand
highly sophisticated analvtical and computational methods. yet are insutticient to provide a rational
theme that citn be used to derive gencral design guidelines. The present paper is an attempt to
explore the subject matter via a different avenue, such that various nonlinear effects may be
understood in physical terms which require relatively little in the way of advanced mathematics and
computition. The paper proposes to study the problem using a sumple. but intuitively appealing.
reduced suffness analysis of eylinder buckling which recognizes the physical characteristics present
n advanced postbuckling and uses them in an equivalent linear, cigenvalue analysis,

This investigation highlights the specific relationship between laminate stiffness parameters,
ctliciency of buckling resistinee and imperfection sensitivity in postbuckling deformation. It is
observed that the eriteria for optinuahity and reduced imperfection sensitivity are often opposed to
cach other. The reduced buckling load appears to be @ uselul indicator for evaluating qualitutively
the relative imperfection sensitivity of vartous ncarly optimal kininated shell designs which would
be of great interest to designers. Another interesting feature is the anadytical stady i terms of
bounded genenie orthotropie constants which furaishes a general theme on the ssue. A cont-
prefiensive discussion on the theoretical Toundation of the reduced stiffness approach and other
sinlar approximate methods is provided. 1 has been shown throughout this paper that the proposed
physical approach suceesstully and consistently explainy most of the observations reported in the
hiterature winch were based on nonlincar postbuckling analyses,
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INTRODUCTION

The buckling behaviour of circular cylindrical. taminated. composite shells under axial
compression is an important design consideration. as a significant feature of composite
technology is tatloring capability and optimization of performance through the additional
degrees of freedom thereby introduced. viz. fiber orientation and distribution in cach
lamina. laminae thickness, stacking sequence and material properties. It is observed that
optimization with respect to the linear buckling load introduces signiticant changes in
postbuckling behaviour which, in most cases. may prove highly undesicable tfrom a practical
performance point of view because of the lurge increase in imperfection sensttivity. This
has prompted interest in studying the effects of fiber orientation, stacking sequence and
lamina thicknesses on the imperfection sensitivity of axiallv compressed laminated com-
posite shells.

Current approaches generally apply Koiter's asymptotic peturbation method or non-
linear imperfect equilibrium analysis tn conjunction with an optimization program for
estimating imperfection sensitivity of the generated optimal laminate designs. These com-
bined postbuckling and optimization exercises rely heavily on intensive. but physically
remote, analytical and computational methods which neither help in undestanding the
physics of the structural behaviour nor offer scope for incorporation into the design-
synthesis process. Naturally, the complexity of the problem and a large number of design
variables make a parametric study a prohibitively expensive exercise. In the literature,
numerical results for very select examples are reported which are tnsuflicient to provide
general design recommendations,

The present paper is an attempt to explore the subject matter via a different avenue
such that various nonlincar effects may be understood in physical terms which require
relatively litthe in the way of advanced mathematics and computation. Here, the aim is to
highlight the application of certain striking physical ideas to the complex issue of imper-
fection seasitivity, which are susceptible to study in a relatively simple and unsophisticated
munner yet led to sound hypotheses. With this philosophical background. this paper
proposes to study the present problem using a simple, but intuitively appealing, reduced
stiffness anmalysis of cylinder buckling first introduced by Croll and Batista (1981 for
isotropic shells.

The method is based on the concept that modal coupling and imperfections, in the
postbuckiing range, will result in the crosion of the initial stabilization provided by the
quadratic circumferential membrane energy component, P, the result of Poisson bulging
in the fundamental state. This has led to the simple idea that a lower limit to the buckling
strength can be provided by a reduced critical load which can be obtained by ignoring the
specific energy component, V,, in the lincar buckling analysis. The present study attemipts
to establish the reduced buckling load as a useful measure of imperfection sensitivity in the
optimization process. Emphasis is placed on developing a consistent physicat model which
can be used to derive general design guidelines.

This paper is organized in the following nuanner. Firstly, a brief review of the relevant
literature and a summary of the philosophy of the reduced stitfness micthod is presented.
Ancenergy method for classical and reduced stiffness buckling analysis of axially compressed
cylinders is extended to laminated orthotropic composite shells. The results of the proposed
physical approach are compared with those obtained by nonlincar analysis (Simitses and
Sheinman, 1982) and its theoretical foundation is discussed in greater depth in view of
recent analytical/numerical findings. The imperfection sensitivities of a number of optimal
laminated shell designs, available in the literature, are examined using the proposed
criterion. Finally, the analysis is presented in a generic form which establishes a set of
physical parameters affecting imperfection sensitivity and efficieney of laminates and. there-
fore. offers a rational theme for use in design.

It has been shown throughout the paper that. based on nonlincar postbuckling
analysis. most of the observations reported in the literature can be explained via a reduced
stiffness buckling model contained in a remarkable contribution by Croll and Batista
(1981).
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BACKGROUND LITERATURE

The stability of thin, circular cylindrical shells has received considerable attention over
past decades. It is possible, but somewhat impractical, to provide an overview of the large
amount of theoretical and experimental results available on this topic and thus attention is
focussed strictly on the title paper. The interested reader is referred to an excellent review
by Simitses {1986} covering recent developments in this area.

The two general approaches for imperfection sensitivity analysis of composite shells,
namely. Koiter's asymptotic perturbation method and full nonlinear equilibrium analysis
of the imperfect shell, are briefly reviewed. Some of the optimization studies are summarized
and attempts at approximate analysis of the problem are enumerated.

Using Koiter's (1945) method. Tennyson and Hansen (1982) presented a detaited
study on optimum design for buckling of laminated composite cylinders including their
postbuckling response and imperfection sensitivity. They reported that varying the stacking
sequence can more than double the buckling strength. However, the increased load capa-
bitity was also asssociated with increased imperfection sensitivity which was measured by
computing Koiter's b-cocfficient for the particular design of interest. Some of the results
are more interesting than surprising. For example, two graphite/’vpoxy shells made of
{90°0°0 90] and [0790,/90/0] laminates. respectively, have similar lincar buckling loads but
substantially different postbuckling characteristics ; shell 1, [90,0.0,/90]. exhibiting stable
postbuckhing behaviour (4 > 0) while shelt 2, {0/90/90/0], is unstable (b < 0). Sun {(1987)
considered o typical four-ply laminate, [90,6, —,90]. and studied the effects of fiber
orientation, 4, on buckling strength and tmperfection sensitivity as measured by the b-
coctlicient in the presence of various impertection magaitudes. His results cannot be easily
rationalized. Semenyuk and Zhukova (1987) also studied various laminated shell designs
ustng Koiter's general method and observed a relationship between the h-cocflicient and
the ratios of the fongitudinal and transverse elastic modutt to the shear modutus, the larger
these two ratios, the lower the imperfection sensitivity, This will be examined in the following
sections. These observations could not be generalized with confidence because of a imited
number of examples. Natarally, the complexity of the problem and a large number of design
virrtables make parametrie study prohibitively expensive and impractical.

Shemman and Simitses (1977) presented a complex but more accurate numerical
sotution scheme for nonlinear stability analysis based on the von Kurman-Donncell non-
lincar kinematic relations, The computational procedure for obtaining the critical limit
point load of impertect shells employed a Fourier series type of sepuarated solutions ; through
the Galerkin procedure the field equations were reduced to a system of ordinary differential
equations and subscequently solved by a finite difference scheme. This method was extended
to study the post limit point response of imperfect isotropic shells (Simitses and Sheinman,
1982). Using this procedure, Simitses ef ef. (1985) established the imperfection sensitivity
of composite shells through plots of critical (limit) loads versus imperfection amplitude.
The larger the drop in critical load value with increasing amplitude, the greater was the
sensitivity. Simitses and has associates have studied the problem in great depth and provided
useful numerical results for comparative purposes. The interesting features of their results
will be discussed later.,

Sun and Hunsen (1988) combined Koiter's general method with an optimization
program and reported that this introduced significant changes in the imperfection sensitivity
of shells. This suggests the existence of multiple optimal laminate configurations with
varying degrees of imperfection sensitivity and post-buckling response. This notion will be
examined thoroughly in the rest of this puper. The following two optimization studies are
sclected for our purposes. Kobayushi er al. (1982) presented optimal designs of luminates
composed of three types of layers, axial (0 = 0), circumferential (0 = 90) and helical
() < 0 <90). The optimization was carried out with respect to the number, thickness and
stacking sequence of the three basic luyers. It was found that many laminate designs
exist, corresponding to an optimal buckling load. Nshanian and Pappas (1982) applied a
mathematical programming technique to obtain the optimal ply angle and through-thick-
ness distribution in symmetric laminates. In cases of axially loaded cylinders, the existence
of multiple optimal solutions was reported.
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The increasing reliance on numerical methods has motivated many researchers to focus
on fundamental conceptual notions of postbuckling behaviour and to develop simplitied
design methods. Here. a cursory review ol some such attempts is presented. At present. a
discusston of the reduced stittness method (Croll and Batista, 1981) is avoided as it will be
dealt with, in detail, later in the paper. Culladine and Robinson (1978) strongly advocated
a simplitied treatment of shell buckling problems. Taking ¢ clue from the formal unalogy
between Koiter's impertection sensitivity formula and that of Ayrton and Perry (1886) for
a simple column. they explained important physical aspects of imperfection sensitivity, The
notion they proposed was the steady growth of impertection amplitude as the compressive
load on the shell increases., bringing progressive changes in the stress resultants throughout
the shell; collapse occurs when the largest stress reaches a value equal to the classical
buckling stress. an idea sinular to the growth of bending stress in Avrton and Perry column.
This simple approach allowed them to write load-imperfection relations qualitatively similar
to that of Koiter’s (1945): quantitatively, the agreement between the two was extremely
poor. Walker and Sridharan (1980) argued that, since the curvature. and. in particular,
w R term in the circumterential strain increases a shell’s resistance to initial buckhing
compared with the corresponding Hat plate. the same curvature term is also responsible for
s marked imperfection sensitivity. [t was, therefore, suggested that a reliable lower bound
to buckling strength of a shell is its strength as a flat plate. with curvature playing only the
role of biasing the shell to buckle in a mode corresponding to its Towest critical stress. Thus,
the neutral equilibrium or lower bound stress is equal to the buckling stress ol the prismatic
flat plate structure whose side s equal to the developed haltwave length of the buckled
cylinder.

It may be slightly out of context to mention the appproximate buckling analysis of
pressurized eylinders, yet it highlights an interesting teature. Croll (1975) explained that
unstable posterttical behaviour is the result of loss of membrance stiffness in the presence
of impertections and proposed a quasi-inextensional lincar encergy analysis ignoring the
contribution from membrane energy in order to obtain a lower bound buckling load. Wittek
(1982) tollowed o similar wdea ina fnite clement analysis and studied the relation between
imperfection magnitude and loss of the membrance encrgy component. This approach could
not be extended to axially loaded cvlinders since, in that case, the membrane and bending
energy provide roughly equal contributions to the reststance to eritical detormation. Thus,
neglecting the membrane strain energy would Tead to a lower bound prediction of 50% of
the classical buckling load for the whole runge of problem variables, which does not conform
with cxperimental observations.

REDUCED STIFENESS MODEL OF SHELL BUCKELING

It is very clear that current approaches in this arca rely heavily on complex analytical
and computational methods which do not help in understanding the physics of structural
behaviour, Croll and Batista (1981) made a significant contribution by introducing a
reduced stiffness analysis for cylinder buckling which, in essence, was an application of
Donnell’s (1934) rationale for coupling modes in the postbuckling regime. The upproach
is based on the very simple notion that it is diflicult 1o close something that is not already
there at the outset. Thus, an analogy is drawn in which the loss of carrying capacity of a
shellin the clastic postbuckling regime represents the loss of certain components of its initial
stitfness which should be capable of explanation in terms of initial problem parameters. t.c.
geometry, deformation and assoctated energy terms.

The basic philosophy of the reduced stiffness method is summarized very bricfly in
symbolic form and details can be found clsewhere (Croll and Batista, 1981). The quadratic,
incremental potential energy, 7., of a given shell subjected to axial compression may be
written as.

(H

where (s internal strain encrgy and 1, 1s the work done by stresses in the fundamental state
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Fig. I. Coordinate axes.

on quadratic membrane strains. ¥, can be decomposed into its axial and circumferential
components, ¥, and V,. respectively, thus

Ve=V.—V. ()

It is to be noted that V,, known as the quadratic circumferential membrane energy. is a
result of Poisson expansion (bulging) occurring in the fundamental state. Now, substituting
for V, from eqn (2) into eqn (1)

V2= Uc—[V(_VI] (3)
and regrouping terms leads to
V2=[Uc+VI]—VX' (4)

Thus, it1s the term V, which contributes to initial stabilization. Reiterating Donnell’s (1934)
arguments and using a physical model, Croll and Batista (1981) demonstrated that, in the
postbuckling regime, coupling of the periodic critical deformation mode with an axisym-
metric mode of half the axial wavelength will result in erosion of the initial stabilization
provided by V,. This led to the simple idea that a lower limit to the shell postcritical stiffness
would be provided by a reduced incremental quadratic potential energy,

(Vl)rcd = L’c— Vn (5)

obtained by eliminating V,; the buckling load thus obtained is referred to as the reduced
buckling load. This reduced stiffness model is found to predict closely the mode triggering
buckling in a large number of experiments and to provide reliable lower bounds.

ANALYTICAL FORMULATION

The Rayleigh-Ritz energy method presented buy Croll and Batista (1981) is extended
to the buckling analysis of laminated. composite circular cylindrical shell of length L,
radius R, and thickness ¢, simply supported at the ends (Fig. 1).

The membrane strain vector, ¢, is expressed as the sum of the prebuckling strain, £,
and incremental linear and quadratic membrane strain vectors, ¢’ and ¢”, respectively, while
N. N, n" and n” are correspondingly associated stress vectors. Here subscripts “*x" and 1"
are used to indicate axial and circumferential coordinate axes, respectively. Thus, the
components of the strain vector are

e.=E +¢e . +e
e, =E t+e +e

eq = Eqteqtek,. (6)
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Similarly,
N.=N.+n.n

N, =N +n+n/
Nw = Nu+n’n+”:1- (7

Using Donnell approximations, the strain—displacement relations may be written as

RS T W ) . ”_|<E'w)3 , (c’w)z g
“Ta& “TR\G ) T CaT\a) T\ ©

Here, u, v and w denote displacements in the axial (x). circumferential (¢) and radial ()
directions, as shown in Fig. |. The curvature terms are defined as

L]
R

(o]

|2
0
e\ N

o)

X
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e cow 20w

v = T ¢ = k\l = - =
Ay k Réixdg

cx” h m ©)

According to the general stability theory (Croll and Walker, 1972), the quadratic
components, V,, of the total potential energy control the stability of equilibrium of the
fundamental path and lead to an eigenvalue problem yielding the critical stable state of the
shell. The incremental strain energy, U,, may be written as (Croll and Batista, 1981)

l ! (2n l t Pln
U, = f J (e +ne,+n, e )rde de+ , j J (mk.+mbk,+mk yrdddx, (10)
13 ~ Ju Jo

Y]

2

in contrast to classical analysis where the work done by the axial load is given as
{ "2n
VW=JJ N eirdd du. (1
0N Jo
Croll and Batista (1981) restructured this term as V,, = V,—V,, where

1 f1 (2
Vx =3 J\ (N\'e,,r,'*'n.’rlEr)r d¢ dx
0

and

| L (2
J (n) E)rde de. (12)
0 Jt

0

Constitutive relation
Classical lamination theory, based on Kirchhoff's hypothesis, gives force (N) and
moment (/m) resultants by the following constitutive relations (Jones, 1975)

N- Aii Bil é S
{"1} - [Bij D:/]{k} L= l.....3 (13)

where 4, B,and D, (i, j = 1,..., 3) represent the stretching, coupling and bending stiffness
matrices of a laminate and are defined as follows

(A,,.B,-,-,D,,):J ’Q,,(l,:.::)d: (ij=1,....3). (14)
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Here. Q= E\'d. Q»- = E+/d. Q2 =v2Q2:. Q11 =G and d = | —v,,v,,. The details of
the derivation can be found elsewhere (Jones, 1975). It is assumed that the in-plane stifiness
matrix. 4. has orthotropic form.i.e. 4,3 = 4:3 = 0.

The linear membrane theory is usd to derive the prebuckling strain vector, E:

E.=NC,. E=NC, and E, =0 (15)
where
A, A .
C|= A.‘-’ C:= AI- and A_—'Anz ::“44.{3. (16)

Displucement functions
The classical. simply supported boundary conditions, i.e. @ x=0/w=m,=v =0
and NV, = const. are assumed which are satisfied by the following displacement functions

u

U cos !Zf sin i¢

. jnx .
v = Vsin !-L—cos i

=

W sin 4? sin i, (7

These boundary conditions can be exactly satisifed by symmectric laminates with 8, =0
and cross-ply laminates with 8, and B, the only non-zero terms in the B, submatrix. In
the case of an antisymmetric angle-ply, with 8, and B,, the only non-zero terms in the B,
submatrix, the force boundary conditions are violated.

Substituting the assumed strain -displacement and constitutive relations and appro-
priate derivatives of the displacement functions into egns (10) and (12), encrgy expressions
are derived explicitly and are listed in Appendix A. Stationarity of the quadratic, incremental
potential energy with respect to the kinematically admissible displacements (u, v, w) gives
the following conditions

—t === (18)
which lead to a set of linear homogencous algebraic equations of the form:

Kll Kl?. KIJ U
K K» Ky Ve=0 (19
Ky Ky Kpllw
where
Kii=4, A +4,i°
Kiy= (A +Ay,)iz

Ku = —All;'— D

K:: = A22i2+A33;.2

Ky; = K33+ N.C,—N.C, (20)
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where

|
k”;; =4 ‘:+ ‘E’f [D| |/:.4+2(D]:+ZD_”)I.-/.-+D::I‘A]

C‘,z /..:+(A”;.:+Al:i:)cl
C,= (A‘{[:/..:“f'“‘::i:)C:
. _JmR

fo= e

L

The buckling criterion is the existence of nontrivial solutions of eqn (19) which is
dictated by the vanishing determinant of {K]. Thus.

det [K] = 0. 2n

Equation (21) generates axial buckling load spectra for various axial and circumferential
wave numbers ; the minimum of which is the classical. linear buckling load of the shell.

The reduced critical load is obtained by ignoring the energy term FV, in the quadratic
potential energy which, in turn, is equivalent to ignoring term N, C, in the expression for
K. ineqn (20) and subsequently invoking condition (21).

BOUNDS ON THE REDUCED CRITICAL LOAD

The effects of shell length, L, on jhe reduced critical load, N,, were studied ; for this
purpose, the lower and upper bounds corresponding to L = « and L = 0, respectively,
were derived. Ttis to be noted that the classical buckling load, M., is independent of length.

The buckling load depends on internal strain energy and the load potential such that

U, /e
N, == and N, x °. (22)
‘ ‘/\ - ‘/I ! l/ 1
If we assume that the critical wave numbers (4, /) corresponding to the classicul and reduced
loads are the same, so that the total energy in the two cases also remains the same, the ratio
of the two loads can be written as

A (23)

Using the appropriate expressions for V, and V, from Appendix A and substituting for £,
and £, from eqn (15) gives

Ve (412;;?+_A::i:)€: (24)
Ve A(1+ACo+40°C) )
As L — x, /= jaR/L — 0 and therefore eqn (24) results in
V,  A4..i°C,
=t (23)

V.= Anic,

Substituting for C, and C, from (16) and using eqn (23), one can find that, in the limit
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V, N,
L—x, i,—zl and — = 0. (26)

Of course, L = x is a hypothetical case and our basic assumption, as stated above, may
not be true, in general, but it clearly iliustrates the point that the reduced buckling load
would decrease with increasing length of slenderness, similar to that of an Euler column.
In the derivation of the reduced buckling load, N,, the V, energy term is neglected which,
in etfect. implies that the prebuckling circumferential strain. E,. and hence the Poisson’s
effect. is ignored. It provides a clue to the observed relationship.

The other bound can be obtained by setting L = 0 in eqn (24). Thus

V ,C,
Voo AuG 27
Ve 1+4,,C
and the limiting ratio of the reduced to classical loads becomes
Nr A |2C5
Si= e 28
N, 1+4,,C, (28)

which will always have a finite value on account of Poisson’s etfect. For an isotropic shell,
A, = A:: = E/(1=v*)and 4, = vA,,, which upon substituting in eqn (28) results in

N | v3 2)
N T (2

Forv = 0.3, N,/N, = 0.953.

Efficiency of buckling resistance of laminates
For a given orthotropic composite material, the maximum buckling load attainable is
(Tennyson, 1987)

Er’ T
N=C"g 6= J3(1=v2) (30)

and is referred to as the buckling resistance of an equivalent isotropic laminate which is
independent of lamination sequence. Thus, the ratio of the classical buckling load to the
equivalent isotropic buckling load is defined as the efficiency, n, of the laminate in buckling,
Le.

(31

-
!
2!".2

w

The equivalent isotropic propertics, clastic modulus, E,, Poisson’s ratio, v,, and shear
modulus, G,, are defined in terms of the invariants of the composite material as follows:

U,

v, = U, E. =(-v)U,. G, =U;
where
U, =301 +30::420,:+40;1)
Us=1Q11 +Q2:+60Q,,—401))
Us = §(Qu +02:-2Q:+401;). (32)
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Table 1. Companson of reduced stiffness and nonlinear analyses
isotropic shells. £ = 10.5x10*psi. v =0.3. R = 4in.

Shell /! i o

no. Rt L/R  (Simitses and Sheinman, 1982) Red. stiff. model
1 250 1 0.258 (8) 0.105 (6) 0.396 (10)
2 250 3 0.595 (5 0.113(5) 0.168 (6)
3 250 5 0.719 (4 0.117(4) 0.108 (5)
4 250 8 0.873 (3 0.326 (3) 0.069 (3)
S 250 10 0.875 (3) 0.392(3) 0.062 (3)
6 1000 1 0.446 (13) 0.022 (9) 0.237 (15)
7 500 l 0.344 (1)) 0.076 (8) 0.309 (12)
8 250 I 0.248 (8) 0.106 (6) 0.396 (10)
9 80 l 0.157 (3) 0.151(5) 0.557 (1)

Numbers in brackets denote circumferential wavenumber.

NUMERICAL RESULTS AND DISCUSSION

In this section, the basic proposal that the ratio of reduced to classical buckling load,
p. can be treated as a measure of imperfection sensitivity is examined with the aid of
numerical examples.

Comparison with nonlinear analysis

The effectiveness of the reduced stiffness model is studied by comparing its lower bound
predictions, p, with results of nonlinear analysis of imperfect isotropic shells (Simitses and
Sheinman, 1982). The lower bound, p. limit point, A, and minimum postlimit point loads,
A", the last two values as obtained by Simitses and Sheinman (1982). are presented in Table
1 for a variety of shell geometries. The results of nonlincar analysis correspond to & = |
and an asymmetric imperfection of amplitude 0.1,

The lower bound load und corresponding wavenumber are in remarkably close agree-
ment with A™ for shells 2 and 3 and close to A' for shell 7. The lower bound prediction is
nonconservative for shells 1, 9 and overly conservative for shells 4, 5. Shells | -5 indicate a
consistent drop in p with increasing length, and thus follow the predicted trend. The
implication of this relationship is in contrast to Simitses und Sheinman’s conclusion. that
is, since 4'and A™ increase with increasing length, longer shells are less imperfection sensitive.
In all cases, the buckling mode associated with the reduced buckling load is unique and
always consists of a single axial halfwave (j = |) and a number of circumferential waves
often close to those corresponding to classical buckling. This mode is often observed to
trigger buckling in experiments (Croll and Batista, 1981). At this point, it is worth men-
tioning some potentially serious drawbacks of nonlinear numerical analyses (Croll, 1975),
namely numerical instability, convergence to some misleading complementary equilibrium
paths in the vicinity of limit points, and nonconservative results due to incorrect sign of
the critical imperfection in the case of asymmetric bifurcation. The dependence of p on
imperfections is not explicit but is rather based on physical arguments and, therefore, testing
its validity by comparison with the results of nonlinear analysis for one particular set of
imperfections may not be justified.

Example problems
Three representative problems on buckling of laminated cylinders are considered. The

geometry and material properties are described in Tables 2 and 3. Firstly, a symmetric

Table 2. Shell geometries and laminate configurations

R ! N,
Example Lamination Malerial (in.) (in.) LR (lbin.” ")

| (90, —0, —0,90) boron-epoxy 7.50  0.0212 1,25 417.5
2 (90. 0, 6. 90) graphite-cpoxy 282 0.0171 4 490.3
3 (0.0, 0) glass -cpoxy 594 0.0360 4 630.9
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Table 3. Material properties

E, E. G R,

Material (10* psi) (10° psi) (10°pst) vy, D* 2 3 n I (107°)
Boron e. 30 27 0.65 0.21 0207 030 0304 029 097 0.135
Graphite e. 20.5 1.4 0.59 026 0287 026 0.236 031 096 0.168
Glass e. 7.5 3s 1.25 035 0699 068 0342 082 029 0265

angle-ply laminate is analyzed and variations of # and p with respect to 0 are shown in Fig.
2. It confirms an earlier observation (Simitses ef al.. 1985) that § = 45 is not a good choice
as it exhibits poor efficiency and significantly less p. A steep drop in reduced buckling load
in the vicinity of optima, 6 x 20, 70. is observed.

The second example which involves (90, 6. 8, 90) graphite-epoxy laminates is motivated
by Sun’s results (1987) on a similar clamped laminated shell. The p vs @ plot in Fig. 3 has
qualitative similarities with Koiter's h-coetficient vs @ plots for higher imperfections, £ = 0.2,
0.3 (Sun, 1987, Fig. 10). For example, the b-coefficient has the largest negative value and
thus higher imperfection sensitivity for # = 60-65". In Fig. 3, p assumes its minimum value
in the same range. Also. the h-coefficient for (90,0, 0.90) " is higher than (90, 90,90, 90) and
s0 is the value of p.

The last example considers (0.0, 0) glass—epoxy laminates, which are similar to those
of Tennyson et al. (1971). The variation of p with 8 is smoother when compared with
carlier examples.

Imperfection sensitivity of multiple optimal laminates

In earlicr examples, the thicknesses of the constituent laminae are assumed constant
and only fiber orientation is varied. In a more general optimization exercise, not only the
fiber orientation in a lamina but also its thickness can be considered as variable. Nashanian
and Pappas (1982) and Kobayashi e al. (1982) have reported useful results in this arca. The
most interesting feature of their work is that for a given total thickness, more than one
optimal laminate can be found such that their lincar buckling loads are almost equal. As a
designer, it would be of great interest to examine their imperfection sensitivity and select
the safer configuration.

for L/R - 1
p for L/R = 2
p for LIR = S

pondn

0.0 15.0 30.0 45.0 80.0 75.0 9.0
FIBER ANGLE o

Fig. 2. Buckling of (8, —0. —¢, 0) laminated shells.
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Fig. 3. Reduced buckling load and efficiency of laminated shells.

Table 4 contains results on optimal symmetric laminates of typical designs, which
involve 0, 90 and 0 layers. The optimal value, 0, and thickness distribution among the
three layers have been obtained for a constant total thickness, ¢ = | mm and R = 200 mm,
L = 600 mm (Kobayashi et al.. 1982). The material properties are £, = 1.5 x 10* kgf mm - *,
E,=9.62x 10 kgfmm * G =516x10" kgf mm *and v = 0.32. The pairs of laminates
with cqual critical load, such as 1-2, 3-4, 5-6 etc. exhibit very different reduced critical
loads. The bending stiffness matrices, D, for such a pair of laminates are found to have
some distinct features. In both laminates, D, and D;, elements are identical and within a

pair
DI | Dl l)
e = 1. 33
<Dzz)ununuu:l 8 <DZZ aminate 2 ( )

Within the pair, the laminate with D,, > D, always has the higher value of p. For example,
in group 5-6, Table 4, laminate 5 has Dy, > D, (D,, > D,, for laminate 6) and the value
of p is more than double that of 6. These findings suggest that the laminate with higher
hoop bending stiffness (D,,) is less imperfection sensitive. This fact, which had earlier been

Table 4. Buckling analysis of laminated cylinders

Shell (N.)

no. Lamination (Kgf mm ™) P n
U (90 (0.2). 32 (0.3)) 11.99 0.35 0.69
2 {0 (0.2).58(0.3)] 12.07 0.17 0.69
3 [90 (0.15). 29 (0.35)] 13 0.37 0.75
4 [0 (0.15). 61 (0.35)) 13.26 0.15 0.76
5 [90(0.1). 25 (0.4)) 13.75 0.39 0.79
6 [0 (0.1).65(0.4)} 13.81 0.15 0.79
7 {25 (0.4). 90 (0.1)] 11.23 0.17 0.64
8 (65 (0.4),0 (0.1)] 10.37 0.28 0.59

All laminates are symmetric about their midplane and only the half-laminate
geometry is shown. The fractions in brackets denote the thickness of the
respective lamina.
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Tuble 5. Reduced stiffness analysis of laminated cylinder

Shell N,
no. Lamination (kgf mm~%) I "
I [60.0. —60) 9.04 019 092
2 {30. 90. —30] 9.27 0.15 0.94
3 [0.55.0] 7.16 032 073
4 [90. 35, 90} 7.16 0.23 0.73
5 [90. 0. 45} 7.25 0.47 0.74
6 {30.0.90§ 7.01 0.25 0.71
7 [60.90.0] 6.90 0.50 0.70
8 {0, 90, 45} 7.25 0.27 .74
9 [55.0.0. —53] 15.78 0.26 0.90
10 [35.90.90. —35] 16.00 0.16 0.92
Il {55.0. —55.90] 15.47 0.18 0.89
12 [45.0. —45. 90| 14.57 0.15 0.84

All laminates are symmetric about their midplane and only the upper
halves of the laminates are shown. Each lamina is 0.125 mm thick.

pointed out by Tennyson and Hansen (1982) using Koiter's theory, is now supplemented
with a more physical explanation.

Table 5 contains more examples of laminates with almost equal buckling load and
different imperfection sensitivity. In this group, laminates with constant tamina thickness,
= 0125 mm, L = 600 mm and R = 200 mm are considered. Examples 1-2 and 9-12 are
exactly as reported by Kobayashi er al. (1982) while. in examples 3 -8, the laminates are
assumed symmetric rather than antisymmetric as reported in the original paper. The reason
is that the assumed displacement functions in our simple energy method do not satisfy
boundary conditions for antisymmetric laminates due to extension-twist coupling, i.c.
nonzero B, and B, terms. Qur conjecture about the relation between the relative mag-
nitude of hoop bending stiffness and imperfection sensitivity is. in general, satisfied by
laminate pairs with nearly equal buckling loads. Laminates 3-4 are an exception.

Table 6 summarizes results on optimal symmectric laminates (Nashanian and Pappas.
1982) of constant total thickness, £ = 0.2 in. and shell radius, R = 6 in. for two scts of the
purameter, Z = 60 and 1500. The material propertics are £, = 30 x 10° psi, £, = 0.75 x 10°
psi, G = 0.375x 10* psi and v = 0.25. For the first set, Z = 60, among laminates 2 and 3
which have almost equal buckling loads, laminate 3 is preferable due to a higher value of
p. Laminates 3 and 6, corresponding to higher values of g, have D,, > D,, and thus do
not follow our carlicr conjecture. At the same time, it is found that their values of clement
A, > are higher than of laminates 2 and 5, respectively, Thus, not only the hoop bending
stiffness but also the Poisson in-plane stiffness term, A,,, has a marked influence on the
imperfection sensitivity.

Table 6. Reduced stiffness analysis of optimized cylinders

Shell N
no. Luamination (10°tbin. '} P} [
7z =60
I [22@.1)) 0.165 0.72 0.38
2 {36 (0.069), 89 (0.031)] 0.403 0.39 0.94
3 [47 (0.04). 18 (0.024). 84 (0.036)] 0411 0.53 0.96
Z = 1500
4 [tz (0.0} 0.169 0.45 0.19
S [38(0.07). 90 (0.03)] 0.279 0.11 0.65
6 [42 (0.023). 0 (0.047), 73 (0.03)] 0.341 0.30 0.79

All laminates are symmetric about their midplane and only the upper half is shown, The
fractions in brackets are the respective lamina thicknesses.



1588 M. D. Panxpey and A. N. SHERBOURNE

Remurks

The basic ideas behind the proposed approach are discussed in the light of some of the
analytical results recently reported in the literature.

The reduced stiffness model provides a lower bound load beyond which, in the advanced
postbuckling regime. the shell is expected to have stable equilibrium. The shell can buckle
at such a load level due to the presence of larger imperfections and stiffness loss in modal
coupling. In fact. Pedersen’s (1974) findings on advanced postbuckling behaviour ot imper-
fect shells support such a line of thinking. He reported that the presence of relatively larger
axisymmetric imperfections decreases the bifurcation stress significantly. but, at the same
time, stabilizes advanced postbuckling behaviour in the sense that shells could support
larger loads than the buckling load before collapse occurs. This held true even in cases
where initial postbuckling behaviour, in Koiter's sense. indicated an unstable bifurcation.
Sun’s results (1987) on a clamped (90.8, — ¢, 90) laminated cylinder follow a similar trend.
He found extreme sensitivity to smaller imperfections and more stable postbuckling, marked
by a positive h-coetficient, combined with large imperfections for a wide range of fiber
orientations, €. Simitses and Sheinman (1982) reported for shell 6 in Table 1 that with
increase in imperfection amplitude, A™ increases slowly while A' decreases drastically and
both values approach cach other. Eventually, for & = 4. a very large imperfection, both
become almost identical, i.e. ' = 2™ x 0.08.

Recently, Geier and Rohwer (1989) studied the comparative postbuckling behaviour
of an optimized shell panel, as reported by Zimmermann (1982). against a reference using
a nonlinecar finite element program. Optimized and reference laminates consisted of 16
layers with fiber orientations of [(£26.1),(+55.8),], and [90,). respectively. The load -
deflection behaviour of the optimized design (Figs 13 and 14 in Geier and Rohwer, 1989)
was marked by a severe load drop of almost 50%, indicating extreme imperfection sensitivity
when compared to the reference design, in spite of the fact that the lincar buckling load of
the optimized panel was almost twice the reference value. Reduced stiltness analyses of
cylindrical shells of the above-mentioned optimized and reference configurations, respec-
tively, provide the following results : buckling loads, N, = 35.48 and 17.36 N mm ', lami-
nate cthiciency, = 0.96 and 0.47, and reduced critical load ratio, p =048 and 0.79.
Muterial constants were taken from Zimmermann (1982). The prediction of imperfection
sensitivity of the optimized design (p = 0.48) using the reduced stiffness model is in close
agreement with accurate, nonlinear finite element analysis. In the case of the optimized
laminate, significantly fess hoop bending stiffness, Da.,, and exceedingly large in-plane
Poisson’s stiffness, 4., compared to the reference design is noteworthy. reinforcing the
notion regarding the relationship between imperfection sensitivity and laminate stiffness
parameters. The buckling mode corresponding to the reduced buckling load, most often,
consists of one long axial wave, a fact that is further verified by Geier and Rohwer (1989),
who reported that advanced postbuckling is generally characterized by one deep buckle.

Becker er af. (1982) analyzed the nonlincar behaviour of two 8-ply cylindrical pancls
of configurations, (90, £45,0), and (90,0),. respectively. using ¢ STAGS-C code. For
these two laminates, they found nondimensional buckling load of 45.4 and 33.3, and a ratio
of nonlincar collapse to buckling load as 0.71 and 0.88. respectively. Thus, the first laminated
panel, with higher buckling load, scems to be less reliable in the nonlincar range. The
reduced stiffness analysis of two shells of identical laminates, material and gecometry,
estimates the postbuckling load-carrying capacity in terms of p as 0.74 and 0.98 and the
laminate efliciency, 5. as 0.65 and 0.48, respectively, which is in reasonably close agreement
with accurate analysis. Interestingly, the hoop bending stiffness, D,,, is identical for both
laminates but the in-plane stiffness, A .. for the first is quite large compared to the second,
which seems to make it more imperfection sensitive.

The coupling of modes further complicates the issuc. In contrast to classical
approaches, Hunt er al. (1986) explored the problem using a mathematical concept of
symmetry breaking. The recognized harmonic buckling modes for axially loaded cylinders
are, by nature, symmetric, but combinations of these may lead to asymmetrical deformation,
the Yoshimura pattern. The effects of the symmetries, which appear in the buckling modes
but not in the final deformed shape and thus not in the underlying governing differential



Imperfection sensitivity of composite shells 1589

equations, have revealed various interesting features of this complex problem. They reported
that interaction between any chequerboard mode and its axisymmetric counterpart, which
have well separated critical loads on the fundamental path. is responsible for symmetry
breaking effects and associated severe imperfection sensitivity. This reinforces the point
that multi-mode interaction is an inherent and inescapable part of cylinder buckling and
one cannot rely on remoteness of a potentially interacting mode on the fundamental path
as insurance against severe destabilizing effects. Thus, no single mode alone represents a
good Rayleigh-Ritz approximation, since none accommodate the fundamental underlying
asymmetry. Therefore. h-coefficients computed on the basis of a single mode approximation
(Tennyson and Hansen, 1982 ; Sun, 1987) cannot reliably be used for predicting imperfection
sensitivity, on the ground that the presence of complicated but pronounced modal coupling
effects may result in a behaviour very far from single mode analysis. Hunt er al. (1986)
complimented the reduced stitfness model in their words, Croll (1981) associates the
destabilization and subsequent restabilization of cubic and quartic energy terms with a
particular quadratic term (V) and thus gets results from a linear eigenvalue analysis that
compare well with experiment.

The discussion highlights the complexities of postbuckling and imperfection sensitivity
which certainly cannot be encapsulated by the reduced stiffness model in a precise manner.
At the same time. this discussion substantiates the ideas behind this physical model of
imperfection sensitivity by quoting similar observations from various numerical/analytical
studies. In many cases, the proposed simple analysis is found to predict the behaviour
mechanism remarkably well. For example, shell 3, in Table I. undergoes snap-through
instability at A' = 0.719 (n = 4) and modal coupling brings down its strength to p = 0.108
(n = 5) which is also confirmed by computer analysis, A™ = 0.117 (n = 4). Therefore, it is
maintained that the reduced critical load can serve as a uscful indicator in guiding the design-
optimization process. Observing the effects of fiber orientation, laminate configuration and
material propertics on various encrgy terms, particularly the one which will be eroded in
postbuckling, provides a better understanding of the problem and justifies the application
of the proposed approximate method.

GENERIC REDUCED STIFFNESS ANALYSIS

In carlier examples, analyses arc limited to specific material constants, viz. graphite-
epoxy, glass-cpoxy, ctc.. which do not provide a comprehensive understanding of para-
metric dependence of imperfection sensitivity on orthotropic material constants. Therefore,
the present analysis is extended and described in terms of three bounded generic orthotropic
constants (Kuo and Yang, 1988), namely, generalized rigidity ratio, D*, generalized Pois-
son’s ratio, &, and principal rigidity ratio. x. They are defined as

o= T e o - J& (4

and the bounds are

0<D*<g
0.12 < £ <0.65

O0<a<gl.

The buckling loads N, and A, in this formulation, are nondimensionalized in the following
way:

SAS 27-12-H
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N.(N,)

N

This treatment explores buckling behavior for the complete range of material parameters
and furnishes very general conclusions in this regard. The force—displacement relations can
be written in terms of these three global constants as described in Appendix B. The procedure
for obtaining classical and reduced buckling loads remains exactly the same as described
earlier. We can rewrite eqn (24) in generic terms by replacing 4,, by A,; and using appropriate
expressions for A, from Appendix B. The resulting expression for V,/V, is substituted back
into eqn (23) such that the ratio of reduced to critical load, p, becomes

eD* A+ ai’
I B A _leD*. 6
p=1 [;.-(2—8~D*-)+aao*z~]‘ (36)

N.(N) = (33)

This expression is valid for homogeneous orthotropic materials and ¢ = 0.

Results and discussion

At first glance, the generic expression (36) shows that an increase in generalized
Poisson’s ratio, &, or rigidity ratio, D*, would cause a significant decrease in p. The generic
constants for three common composites are reported in Table 3. The buckling loads are
obtained for shell 3 of Table 2 and reported in Table 3. The comparison of p values shows
that the glass-epoxy shell is more imperfection sensitive than those made of boron or
graphite cpoxy composites. This substantiates similar observations made by Khot (1970)
and Semenyuk and Zhukova (1987). The paramctric dependence of cfficiency and imper-
fection sensitivity on gencric constants is reported in Figs 4--7 for a shell geometry L/R = 2,
R/t = 250 and ¢ = 0.016.

It is observed in Fig. 4 that, with increasing D* (2 = const), p decreases and efliciency
improves in monotonic fashion. When ¢ is increased from 0.2 to 0.6, the p and n curves
drop comparatively but the nature of the variations remain qualitatively the saume. The
nature of the p vs D* relation remains largely unchanged in Fig. 5. An increase in o from
0.6 10 0.9 improves efficiency but causes a relative drop in p. Figure 6 reveals that variations

0.8

0.2

+

0.0 0.2 Ur.l 0’.3 ;.l 1.0
Generolized Rigidity Rotio p°

Fig. 4. p and 5 vs D* plots (2 = 0.3).
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0.0 0.2 0.4 0.6 0.0 1.0
Generolized Rigidity Ratio p°

Fig. 5. p and n vs D* plots (¢ = 0.2).

in p with respect to x (D* = const) are insignificant when compared to the efficiency which
improves with increasing a. In Fig. 7, both p and 5 decrease with increasing &. A relative
increase in o improves efficiency significantly yet p remains largely unchanged for a wide
range of &.

The findings of genceric analysis can be summarized as follows. The cfficiency and
imperfection sensitivity both increase with increasing D*. The gencralized Poisson’s ratio
has the worst effect as efficiency decreases and sensitivity increases with increases in its
value. The principal rigidity ratio has the most benign effects | its increase improves efficiency
significantly and imperfection sensitivity remains largely unchanged. Thus, a desirable

p i e=10.2
LLhies~0.2
2 iecx0.4
o n.3.6.0:4.
—— e e s e e,
— \\\.\
0.6
c
T os-
a
0.1
0.2
0.0 0.2 0.4 0. 0.8 1.0

s
Principol Rigidity Rotio @
Fig. 6. p and n vs 2 plots (D* = 0.3).
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Fig. 7. p and n vs ¢ plots (D* = 0.3).

laminate is one which has higher a, smaller D* and smallest possible . Using the expressions
listed in Appendix B. we can write

Dz: = I2"~_.. A” = eD*. (37)

This immediately substantiates our conjecture that faminates with higher D, (i.c. higher
a) and lower 4, (i.e. lower ¢ or D*) exhibit less imperfection sensitivity and further explains
observations regarding relative imperfection sensitivity of multiple optimal laminates.

Semenyuk and Zhukova (1987) pointed out that Koiter’s h-coctlicient was related to the
ratios (£,/G) and (E,/G), such that the larger these two ratios, the lower the imperfection
sensitivity. It was suggested that optimizing the fiber orientation for the lincar buckling
load somehow decreases these ratios and, in turn, increases the imperfection sensitivity.
The reduced stiffness approach provides an explanation for this, Substituting for @, from
the Notation section into eqn (36), the expression for D* can be rewritten as

_ OB 2G _ (riafd)(EG)+2
QU JEE: (1) (EONE: §)

D* (38)

It can now be concluded that smaller values of D* would be associated with higher values
of (E,/G) and (£,/G) and would thereby exhibit less imperfection sensitivity. Figure 4
shows that optimization involving greater efficiency would require higher values of D*,
which is opposite to the requirement of reduced imperfection sensitivity. This clearly
supports Semenyuk and Zhukova’s (1987) results.

CONCLUSION

It is realized that highly sophisticated nonlinear, computerized analyses. available in
the literature, are not able to provide a consistent physical model which might guide
optimization procedures and, therefore, avoid undesirable postbuckling responses. The
present paper is a comprehensive attempt to establish a rational theme using the reduced
stiffness method. There is no intention of replacing existing work but rather of recognizing
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the physical characteristics present in advanced postbuckling and use them in an equivalent
linear, eigenvalue analysis.

Some of the noteworthy conclusions are the following. The reduced stiffness model
provides a relationship between laminate stiffness parameters’ efficiency of buckling resist-
ance and imperfection sensitivity in postbuckling deformation. Commonly, laminates with
higher hoop bending stiffness and lower Poisson in-plane stiffness A,,. are expected to be
less imperfection sensitive. In generic terms, laminates with higher principal rigidity ratio
and lower generalized rigidity and Poisson ratios are favourable candidates for more stable
postbuckling response. Optimization of the buckling load through a judicious choice of
laminate configuration is often associated with increased imperfection sensitivity. It is
observed that the criteria for optimality and reduced imperfection sensitivity are often
opposed to each other, since an increase in laminate efficiency requires a corresponding
increase in generalized rigidity ratio which. in turn, destabilizes the postbuckling behaviour.

The proposed physical approach successfully and consistently explains most of the
observations reported in the literature which were based on nonlinear postbuckling analyses.
This investigation recognizes a set of generic physical parameters and highlights their
specific relationships with optimization and imperfection sensitivity. The reduced buckling
load appears to be a useful indicator for evaluating qualitatively the relative imperfection
sensitivity of various nearly optimal laminated shell designs at the conceptual rather than
the final design stage.
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APPENDIX A: QUADRATIC POTENTIAL ENERGY
Strain energy
The strain energy, U, is the sum of its membrane (U,,), bending (U,) and coupling (U,) components, i.e.

Ue=U,+ U+ U, (Al)

where

Up = 50 [, 2207 <24 QAU = V) 4 Ay (W= i) 4+ A (A +iU)]

2R
oW’ " .
U, = "RT[D”A +2D,,°4 4 DG +4AD i A7)

¢
U = R‘[—B,,).‘UW+B:_.1’W(W-iV)] (A2)

and ("= Rnl/2.

Load potential terms
The load potential cun be written as the algebraic sum of the work done in the axial and circumferential
prebuckling deformations, ¥, and ¥, respectively

s2

., CW Ly - .3
Vo= EF—[N,A'+(A../.'+A,:1')E,]

1

v, C;—w: {247+ A4i°)E (A3
=R (A4 + Ani*)E, 3)

APPENDIX B: STIFFNESS MATRICES IN GENERIC TERMS

The nondimensional stretching and bending stiffness matrices for a symmetric angle-ply cun be obtained in
the following manner (Kuo and Yang, 1988):

i, =t

/\/Qan:

A,

= S Bl
B, = i3 (B

The results are

Ay

(:—[ - D‘)c‘-— (D*~2)s*+ D*

|
A= (; —D‘)x"—(D‘—z)(“+ D*
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A=|a+ ;—ZD‘ cs*+eD*

Ay
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(1+ - —20‘)("3"4—50‘ + 5
b

where
c=cost and s=sinb.

The orthotropic invarients are defined as

In terms of generic constants,

- 1
Uy = —(£+1—450‘+2D‘>.
8lx

D*(l—¢)

1395

(B2)

(83)

(B4)

The buckling resistance of an equivalent isotropic laminate can be written in terms of the generic constants using

eqns (30), (32) and (B4).



